七年级下册数学第六章知识点总结

时间:2021-11-17 14:32:43 编辑:刘东

  七年级下册数学第六章知识点总结

  一、实数的概念及分类

  1、实数的分类 正有理数 有理数零有限小数和无限循环小数

  负有理数

  正无理数

  无理数无限不循环小数

  负无理数

  整数包括正整数、零、负整数。

  正整数又叫自然数。

  正整数、零、负整数、正分数、负分数统称为有理数。

  2、无理数

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  (1)开方开不尽的数,如7,2等;

  π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等; 3

  (3)有特定结构的数,如0.1010010001…等;

  二、实数的倒数、相反数和绝对值

  1、相反数

  实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

  2、绝对值

  一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于

  零,正数大于一切负数,两个负数,绝对值大的反而小。

  3、倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

  4. 实数与数轴上点的关系:

  每一个无理数都可以用数轴上的一个点表示出来,

  数轴上的点有些表示有理数,有些表示无理数,

  实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

  三、平方根、算数平方根和立方根

  1、平方根

  (1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果

  a,那么x叫做a的平方根.=x2

  (2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

  3±3的平方等于9,9的平方根是±(3)平方与开平方互为逆运算:

  (4)一个正数有两个平方根,即正数进行开平方运算有两个结果;

  一个负数没有平方根,即负数不能进行开平方运算

  (5)符号:正数a的正的平方根可用表示,也是a的算术平方根;

  正数a的负的平方根可用-表示.

  a=2(6)x <—> ±=x

  a是x的平方 x的平方是a

  x是a的平方根 a的平方根是x

  2、算术平方根

  a,那么这个正数=(1)算术平方根的定义: 一般地,如果一个正数x的平方等于a,即x2

  x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.

  规定:0的算术平方根是0.

  。=a (x≥0)中,规定x=也就是,在等式x2

  (2)的结果有两种情况:当a是完全平方数时,是一个有限数;

  当a不是一个完全平方数时,是一个无限不循环小数。

  (3)当被开方数扩大时,它的算术平方根也扩大;

  当被开方数缩小时与它的算术平方根也缩小。

  (4)夹值法及估计一个(无理)数的大小

  a (x≥0)=(5)x2 <—> =x

  a是x的平方 x的平方是a

  x是a的算术平方根 a的算术平方根是x

  数学学习方法诀窍

  养成良好的解题习惯

  要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

  在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

  正确对待考试

  首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

  数学一元一次方程知识点

  1.定义:

  一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

  2.解一元一次方程的步骤

  ①去分母:把系数化成整数。

  ②去括号

  ③移项:把等式一边的某项变号后移到另一边。

  ④合并同类项

  ⑤系数化为1