浙教版八年级上册数学第二章知识点

时间:2021-11-22 13:58:09 编辑:刘东

  浙教版八年级上册数学第二章知识点

  实数的概念

  实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

  实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

  实数有什么范围

  在实数范围内,是指对于全体实数都成立,实数包括有理数和无理数,也可以分为正实数,0和负实数,不只是大于等于0,还包括负实数。

  整数和小数的集合也是实数,实数的定义是:有理数和无理数的集合。

  而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数。

  所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。

  实数的性质

  1.基本运算:

  实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。

  实数加、减、乘、除(除数不为零)、平方后结果还是实数。

  任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

  有理数范围内的运算律、运算法则在实数范围内仍适用:

  交换律:a+b=b+a,ab=ba

  结合律:(a+b)+c=a+(b+c)

  分配律:a(b+c)=ab+ac

  2.实数的相反数:

  实数的相反数的意义和有理数的相反数的意义相同。

  实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。

  实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

  3.实数的绝对值:

  实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;

  一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是:|a|

  ①a为正数时,|a|=a(不变)

  ②a为0时,|a|=0

  ③a为负数时,|a|=a(为a的相反数)

  (任何数的绝对值都大于或等于0,因为距离没有负的。)

  4实数的倒数:

  实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a(a≠0)

  初中数学分式的运算知识点

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

  一元一次方程根的情况

  利用根的判别式去了解,根的判别式可在书面上可以写为“△”。

  数学学习方法诀窍

  养成良好的解题习惯

  要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

  在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

  正确对待考试

  首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。